Solifenacin
Solifenacin is only found in individuals that have used or taken this drug. It is a urinary antispasmodic of the anticholinergic class. It is used in the treatment of overactive bladder with urge incontinence. [Wikipedia]Solifenacin is a competitive muscarinic acetylcholine receptor antagonist. The binding of acetylcholine to these receptors, particliarly the M3 receptor subtype, plays a critical role in the contraction of smooth muscle. By preventing the binding of acetylcholine to these receptors, solifenacin reduces smooth muscle tone in the bladder, allowing the bladder to retain larger volumes of urine and reducing the number of incontinence episodes.
Structure for HMDB15530 (Solifenacin)
C27H32N2O6
480.5528
480.226036766
(3R)-1-azabicyclo[2.2.2]octan-3-yl (1S)-1-phenyl-1,2,3,4-tetrahydroisoquinoline-2-carboxylate; butanedioic acid
solifenacin; succinic acid
242478-37-1
RXZMMZZRUPYENV-VROPFNGYSA-N
This compound belongs to the class of chemical entities known as 1-phenyltetrahydroisoquinolines. These are compounds containing a phenyl group attached to the C1-atom of a tetrahydroisoquinoline moiety.
Chemical entities
Organic compounds
Organoheterocyclic compounds
Tetrahydroisoquinolines
1-phenyltetrahydroisoquinolines
Not Available
Not Available
Expected but not Quantified
Solid
Predicted LC-MS/MS Spectrum – 10V, PositiveNot Available
Predicted LC-MS/MS Spectrum – 20V, PositiveNot Available
Predicted LC-MS/MS Spectrum – 40V, PositiveNot Available
Predicted LC-MS/MS Spectrum – 10V, NegativeNot Available
Predicted LC-MS/MS Spectrum – 20V, NegativeNot Available
Predicted LC-MS/MS Spectrum – 40V, NegativeNot Available
Not Available
Not Available
Not Available
None
None
DB01591
Not Available
Not Available
Not Available
Not Available
Not Available
187603
Not Available
Not Available
Not Available
Solifenacin
HMDB15530
HMDB15530
Not Available
216457
Not Available
774754
Enzymes
- General function:
- Involved in monooxygenase activity
- Specific function:
- Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
- Gene Name:
- CYP3A4
- Uniprot ID:
- P08684
- Molecular weight:
- 57255.585
References
- Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
- General function:
- Involved in G-protein coupled receptor protein signaling pathway
- Specific function:
- The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover
- Gene Name:
- CHRM3
- Uniprot ID:
- P20309
- Molecular weight:
- 66127.4
References
- Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
- Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
- Ito Y, Oyunzul L, Yoshida A, Fujino T, Noguchi Y, Yuyama H, Ohtake A, Suzuki M, Sasamata M, Matsui M, Yamada S: Comparison of muscarinic receptor selectivity of solifenacin and oxybutynin in the bladder and submandibular gland of muscarinic receptor knockout mice. Eur J Pharmacol. 2009 Aug 1;615(1-3):201-6. doi: 10.1016/j.ejphar.2009.04.068. Epub 2009 May 13. [PubMed:19446545 ]
- Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A, Ray A: AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol. 2010 Jul;160(5):1119-27. doi: 10.1111/j.1476-5381.2010.00752.x. [PubMed:20590605 ]
- Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A, Mitchelson FJ, Burcher E: Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J Pharmacol Exp Ther. 2009 Mar;328(3):893-9. doi: 10.1124/jpet.108.145508. Epub 2008 Nov 24. [PubMed:19029429 ]
- Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [PubMed:11752352 ]
- General function:
- Involved in G-protein coupled receptor protein signaling pathway
- Specific function:
- The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover
- Gene Name:
- CHRM1
- Uniprot ID:
- P11229
- Molecular weight:
- 51420.4
References
- Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
- Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
- Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A, Ray A: AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol. 2010 Jul;160(5):1119-27. doi: 10.1111/j.1476-5381.2010.00752.x. [PubMed:20590605 ]
- Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A, Mitchelson FJ, Burcher E: Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J Pharmacol Exp Ther. 2009 Mar;328(3):893-9. doi: 10.1124/jpet.108.145508. Epub 2008 Nov 24. [PubMed:19029429 ]
- General function:
- Involved in G-protein coupled receptor protein signaling pathway
- Specific function:
- The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition
- Gene Name:
- CHRM2
- Uniprot ID:
- P08172
- Molecular weight:
- 51714.6
References
- Sinha S, Gupta S, Malhotra S, Krishna NS, Meru AV, Babu V, Bansal V, Garg M, Kumar N, Chugh A, Ray A: AE9C90CB: a novel, bladder-selective muscarinic receptor antagonist for the treatment of overactive bladder. Br J Pharmacol. 2010 Jul;160(5):1119-27. doi: 10.1111/j.1476-5381.2010.00752.x. [PubMed:20590605 ]
- Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A, Mitchelson FJ, Burcher E: Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J Pharmacol Exp Ther. 2009 Mar;328(3):893-9. doi: 10.1124/jpet.108.145508. Epub 2008 Nov 24. [PubMed:19029429 ]
- General function:
- Involved in G-protein coupled receptor protein signaling pathway
- Specific function:
- The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is inhibition of adenylate cyclase
- Gene Name:
- CHRM4
- Uniprot ID:
- P08173
- Molecular weight:
- 53048.7
References
- Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A, Mitchelson FJ, Burcher E: Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J Pharmacol Exp Ther. 2009 Mar;328(3):893-9. doi: 10.1124/jpet.108.145508. Epub 2008 Nov 24. [PubMed:19029429 ]
- General function:
- Involved in G-protein coupled receptor protein signaling pathway
- Specific function:
- The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover
- Gene Name:
- CHRM5
- Uniprot ID:
- P08912
- Molecular weight:
- 60073.2
References
- Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A, Mitchelson FJ, Burcher E: Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J Pharmacol Exp Ther. 2009 Mar;328(3):893-9. doi: 10.1124/jpet.108.145508. Epub 2008 Nov 24. [PubMed:19029429 ]