Glycyl-Methionine Description
Glycyl-Methionine is a dipeptide composed of glycine and methionine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite. Structure
Structure for HMDB28847 (Glycyl-Methionine)
Synonyms
Value Source g-m DipeptideHMDB Gly-metHMDB Glycine methionine dipeptideHMDB Glycine-methionine dipeptideHMDB GlycylmethionineHMDB GM DipeptideHMDB L-Glycyl-L-methionineHMDB
Chemical Formlia
C7H14N2O3S Average Molecliar Weight
206.263 Monoisotopic Molecliar Weight
206.072513014 IUPAC Name
2-(2-aminoacetamido)-4-(methylslifanyl)butanoic acid Traditional Name
2-(2-aminoacetamido)-4-(methylslifanyl)butanoic acid CAS Registry Number
Not Available SMILES
InChI Identifier
InChI Key
PFMUCCYYAAFKTH-UHFFFAOYSA-N Chemical Taxonomy Description
This compound belongs to the class of chemical entities known as dipeptides. These are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Kingdom
Chemical entities Super Class
Organic compounds Class
Organic acids and derivatives Sub Class
Carboxylic acids and derivatives Direct Parent
Dipeptides Alternative Parents
Substituents
Molecliar Framework
Aliphatic acyclic compounds External Descriptors
Not Available Ontology Status
Expected but not Quantified Origin
Biofunction
Not Available Application
Not Available Cellliar locations
Not Available Physical Properties State
Solid Experimental Properties
Property Value Reference Melting PointNot AvailableNot Available Boiling PointNot AvailableNot Available Water SolubilityNot AvailableNot Available LogP-3.3Extrapolated
Predicted Properties
Property Value Source Water Solubility12.3 mg/mLALOGPS logP-2ALOGPS logP-3.3ChemAxon logS-1.2ALOGPS pKa (Strongest Acidic)3.73ChemAxon pKa (Strongest Basic)8.14ChemAxon Physiological Charge0ChemAxon Hydrogen Acceptor Count4ChemAxon Hydrogen Donor Count3ChemAxon Polar Surface Area92.42 Å2ChemAxon Rotatable Bond Count6ChemAxon Refractivity50.39 m3·mol-1ChemAxon Polarizability20.92 Å3ChemAxon Number of Rings0ChemAxon Bioavailability1ChemAxon Rlie of FiveYesChemAxon Ghose FilterYesChemAxon Vebers RlieYesChemAxon MDDR-like RlieYesChemAxon
Spectra Spectra
Not Available Biological Properties Cellliar Locations
Not Available Biofluid Locations
Not Available Tissue Location
Not Available Pathways
Not Available Normal Concentrations Not Available Abnormal Concentrations
Not Available Associated Disorders and Diseases Disease References
None Associated OMIM IDs
None External Links DrugBank ID
Not Available DrugBank Metabolite ID
Not Available Phenol Explorer Compound ID
Not Available Phenol Explorer Metabolite ID
Not Available FoodDB ID
Not Available KNApSAcK ID
Not Available Chemspider ID
Not Available KEGG Compound ID
Not Available BioCyc ID
Not Available BiGG ID
Not Available Wikipedia Link
Not Available NuGOwiki Link
HMDB28847 Metagene Link
HMDB28847 METLIN ID
Not Available PubChem Compound
Not Available PDB ID
Not Available ChEBI ID
Not Available
References Synthesis Reference Not Available Material Safety Data Sheet (MSDS) Not Available General References- Williams WA, Zhang RG, Zhou M, Joachimiak G, Gornicki P, Missiakas D, Joachimiak A: The membrane-associated lipoprotein-9 GmpC from Staphylococcus aureus binds the dipeptide GlyMet via side chain interactions. Biochemistry. 2004 Dec 28;43(51):16193-202. [PubMed:15610013 ]
- Morozova OB, Korchak SE, Vieth HM, Yurkovskaya AV: Photo-CIDNP study of transient radicals of Met-Gly and Gly-Met peptides in aqueous solution at variable pH. J Phys Chem B. 2009 May 21;113(20):7398-406. doi: 10.1021/jp8112182. [PubMed:19438284 ]
- Cascieri T Jr, Mallette MF: New method for study of peptide transport in bacteria. Appl Microbiol. 1974 Mar;27(3):457-63. [PubMed:4596381 ]
- Pan Y, Bender PK, Akers RM, Webb KE Jr: Methionine-containing peptides can be used as methionine sources for protein accretion in cultured C2C12 and MAC-T cells. J Nutr. 1996 Jan;126(1):232-41. [PubMed:8558306 ]
- Nagy Z, Fabian I, Sovago I: [Model studies on the transport processes of anticancer platinum complexes]. Acta Pharm Hung. 2000 Jul-Dec;70(3-6):211-22. [PubMed:11379028 ]
- Bugarcic ZD, Rosic J, Petrovic B, Summa N, Puchta R, van Eldik R: Kinetics and mechanism of the substitution reactions of [PtCl(bpma)]+, [PtCl(gly-met-S,N,N)] and their aqua analogues with L-methionine, glutathione and 5-GMP. J Biol Inorg Chem. 2007 Nov;12(8):1141-50. Epub 2007 Aug 21. [PubMed:17710451 ]
- Boka B, Nagy Z, Varnagy K, Sovago I: Solution equilibria and structural characterisation of the palladium(II) and mixed metal complexes of peptides containing methionyl residues. J Inorg Biochem. 2001 Jan 15;83(2-3):77-89. [PubMed:11237266 ]
- Cascieri T, Mallette MF: Intracellular peptide hydrolysis by Pseudomonas putida and Pseudomonas maltophilia. J Gen Microbiol. 1976 Feb;92(2):296-303. [PubMed:1255132 ]
- Yang X, Wu Z, Wang X, Yang C, Xu H, Shen Y: Crystal structure of lipoprotein GNA1946 from Neisseria meningitidis. J Struct Biol. 2009 Dec;168(3):437-43. doi: 10.1016/j.jsb.2009.09.001. Epub 2009 Sep 3. [PubMed:19733245 ]
- Cascieri T, Mallette MF: Peptide utilization by Pseudomonas putida and Pseudomonas maltophilia. J Gen Microbiol. 1976 Feb;92(2):283-95. [PubMed:1255131 ]
- Nagy Z, Fabian I, Sovago I: Thermodynamic, kinetic and structural studies on the ternary palladium(II) complexes of thioether ligands. J Inorg Biochem. 2000 Apr;79(1-4):129-38. [PubMed:10830857 ]