Aspartyl-Glutamate

Common Name

Aspartyl-Glutamate Description

Aspartyl-Glutamate is a dipeptide composed of aspartate and glutamate. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite. Structure

MOLSDFPDBSMILESInChI

Structure for HMDB28752 (Aspartyl-Glutamate)

Synonyms

Value Source Asp-gluHMDB Aspartate glutamate dipeptideHMDB Aspartate-glutamate dipeptideHMDB AspartylglutamateHMDB D-e DipeptideHMDB DE dipeptideHMDB L-Aspartyl-L-glutamateHMDB

Chemical Formlia

C9H13N2O7 Average Molecliar Weight

261.2087 Monoisotopic Molecliar Weight

261.07227578 IUPAC Name

2-(2-amino-3-carboxypropanamido)-4-carboxybutanoate Traditional Name

2-(2-amino-3-carboxypropanamido)-4-carboxybutanoate CAS Registry Number

Not Available SMILES

NC(CC(O)=O)C(=O)NC(CCC(O)=O)C([O-])=O

InChI Identifier

InChI=1S/C9H14N2O7/c10-4(3-7(14)15)8(16)11-5(9(17)18)1-2-6(12)13/h4-5H,1-3,10H2,(H,11,16)(H,12,13)(H,14,15)(H,17,18)/p-1

InChI Key

CKAJHWFHHFSCDT-UHFFFAOYSA-M Chemical Taxonomy Description

This compound belongs to the class of chemical entities known as dipeptides. These are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Kingdom

Chemical entities Super Class

Organic compounds Class

Organic acids and derivatives Sub Class

Carboxylic acids and derivatives Direct Parent

Dipeptides Alternative Parents

  • Glutamic acid and derivatives
  • Aspartic acid and derivatives
  • N-acyl-alpha amino acids
  • Alpha amino acid amides
  • Tricarboxylic acids and derivatives
  • N-acyl amines
  • Secondary carboxylic acid amides
  • Amino acids
  • Carboxylic acids
  • Organopnictogen compounds
  • Organic oxides
  • Monoalkylamines
  • Hydrocarbon derivatives
  • Carbonyl compounds
  • Organic anions
  • Substituents

  • Alpha-dipeptide
  • Glutamic acid or derivatives
  • Aspartic acid or derivatives
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Alpha-amino acid amide
  • Alpha-amino acid or derivatives
  • Tricarboxylic acid or derivatives
  • Fatty amide
  • Fatty acyl
  • N-acyl-amine
  • Amino acid or derivatives
  • Carboxamide group
  • Amino acid
  • Secondary carboxylic acid amide
  • Carboxylic acid
  • Organooxygen compound
  • Primary amine
  • Primary aliphatic amine
  • Hydrocarbon derivative
  • Organic oxide
  • Carbonyl group
  • Organopnictogen compound
  • Amine
  • Organic oxygen compound
  • Organic nitrogen compound
  • Organonitrogen compound
  • Organic anion
  • Aliphatic acyclic compound
  • Molecliar Framework

    Aliphatic acyclic compounds External Descriptors

    Not Available Ontology Status

    Expected but not Quantified Origin

  • Endogenous
  • Biofunction

    Not Available Application

    Not Available Cellliar locations

    Not Available Physical Properties State

    Solid Experimental Properties

    Property Value Reference Melting PointNot AvailableNot Available Boiling PointNot AvailableNot Available Water SolubilityNot AvailableNot Available LogP-4.64Extrapolated

    Predicted Properties

    Property Value Source Water Solubility16.2 mg/mLALOGPS logP-3.5ALOGPS logP-4.6ChemAxon logS-1.2ALOGPS pKa (Strongest Acidic)2.79ChemAxon pKa (Strongest Basic)8.53ChemAxon Physiological Charge-2ChemAxon Hydrogen Acceptor Count8ChemAxon Hydrogen Donor Count4ChemAxon Polar Surface Area169.85 Å2ChemAxon Rotatable Bond Count8ChemAxon Refractivity65.46 m3·mol-1ChemAxon Polarizability23.37 Å3ChemAxon Number of Rings0ChemAxon Bioavailability1ChemAxon Rlie of FiveYesChemAxon Ghose FilterYesChemAxon Vebers RlieYesChemAxon MDDR-like RlieYesChemAxon

    Spectra Spectra

    Not Available Biological Properties Cellliar Locations

    Not Available Biofluid Locations

    Not Available Tissue Location

    Not Available Pathways

    Not Available Normal Concentrations Not Available Abnormal Concentrations

    Not Available Associated Disorders and Diseases Disease References

    None Associated OMIM IDs

    None External Links DrugBank ID

    Not Available DrugBank Metabolite ID

    Not Available Phenol Explorer Compound ID

    Not Available Phenol Explorer Metabolite ID

    Not Available FoodDB ID

    Not Available KNApSAcK ID

    Not Available Chemspider ID

    Not Available KEGG Compound ID

    Not Available BioCyc ID

    Not Available BiGG ID

    Not Available Wikipedia Link

    Not Available NuGOwiki Link

    HMDB28752 Metagene Link

    HMDB28752 METLIN ID

    Not Available PubChem Compound

    Not Available PDB ID

    Not Available ChEBI ID

    Not Available

    Product: GLP-1(7-36)

    References Synthesis Reference Not Available Material Safety Data Sheet (MSDS) Not Available General References
    1. Bjartmar C, Battistuta J, Terada N, Dupree E, Trapp BD: N-acetylaspartate is an axon-specific marker of mature white matter in vivo: a biochemical and immunohistochemical study on the rat optic nerve. Ann Neurol. 2002 Jan;51(1):51-8. [PubMed:11782984 ]
    2. Battistuta J, Bjartmar C, Trapp BD: Postmortem degradation of N-acetyl aspartate and N-acetyl aspartylglutamate: an HPLC analysis of different rat CNS regions. Neurochem Res. 2001 Jun;26(6):695-702. [PubMed:11519729 ]
    3. Gastman BR, Johnson DE, Whiteside TL, Rabinowich H: Caspase-mediated degradation of T-cell receptor zeta-chain. Cancer Res. 1999 Apr 1;59(7):1422-7. [PubMed:10197606 ]
    4. Lazaro L, Bargallo N, Andres S, Falcon C, Morer A, Junque C, Castro-Fornieles J: Proton magnetic resonance spectroscopy in pediatric obsessive-compulsive disorder: longitudinal study before and after treatment. Psychiatry Res. 2012 Jan 30;201(1):17-24. doi: 10.1016/j.pscychresns.2011.01.017. Epub 2012 Jan 24. [PubMed:22281202 ]
    5. Grella B, Adams J, Berry JF, Delahanty G, Ferraris DV, Majer P, Ni C, Shukla K, Shuler SA, Slusher BS, Stathis M, Tsukamoto T: The discovery and structure-activity relationships of indole-based inhibitors of glutamate carboxypeptidase II. Bioorg Med Chem Lett. 2010 Dec 15;20(24):7222-5. doi: 10.1016/j.bmcl.2010.10.109. Epub 2010 Oct 26. [PubMed:21074428 ]
    6. Tsai SJ: Central N-acetyl aspartylglutamate deficit: a possible pathogenesis of schizophrenia. Med Sci Monit. 2005 Sep;11(9):HY39-45. Epub 2005 Aug 26. [PubMed:16127367 ]
    7. Tsai SJ: Strategies to increase central N-acetyl aspartylglutamate: a potential treatment for schizophrenia and bipolar disorders. Schizophr Res. 2005 Jul 15;76(2-3):359-60. [PubMed:15949670 ]
    8. Collard F, Vertommen D, Constantinescu S, Buts L, Van Schaftingen E: Molecular identification of beta-citrylglutamate hydrolase as glutamate carboxypeptidase 3. J Biol Chem. 2011 Nov 4;286(44):38220-30. doi: 10.1074/jbc.M111.287318. Epub 2011 Sep 9. [PubMed:21908619 ]
    9. Belokrylov GA, Popova OYa, Sorochinskaya EI: Immuno-, phagocytosis-modulating and antitoxic properties of dipeptides are defined by the activity of their constituent amino acids. Int J Immunopharmacol. 1999 Dec;21(12):879-83. [PubMed:10606007 ]
    10. Baslow MH: Functions of N-acetyl-L-aspartate and N-acetyl-L-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. J Neurochem. 2000 Aug;75(2):453-9. [PubMed:10899919 ]
    11. Singh AK, Gupta S, Jiang Y: Oxidative stress and protein oxidation in the brain of water drinking and alcohol drinking rats administered the HIV envelope protein, gp120. J Neurochem. 2008 Mar;104(6):1478-93. Epub 2007 Dec 6. [PubMed:18067547 ]
    12. Gafurov B, Urazaev AK, Grossfeld RM, Lieberman EM: N-acetylaspartylglutamate (NAAG) is the probable mediator of axon-to-glia signaling in the crayfish medial giant nerve fiber. Neuroscience. 2001;106(1):227-35. [PubMed:11564432 ]
    13. Malomouzh AI, Nikolsky EE, Lieberman EM, Sherman JA, Lubischer JL, Grossfeld RM, Urazaev AKh: Effect of N-acetylaspartylglutamate (NAAG) on non-quantal and spontaneous quantal release of acetylcholine at the neuromuscular synapse of rat. J Neurochem. 2005 Jul;94(1):257-67. [PubMed:15953368 ]
    14. Baslow MH, Guilfoyle DN: Canavan disease, a rare early-onset human spongiform leukodystrophy: insights into its genesis and possible clinical interventions. Biochimie. 2013 Apr;95(4):946-56. doi: 10.1016/j.biochi.2012.10.023. Epub 2012 Nov 11. [PubMed:23151389 ]
    15. Gryz EA, Meakin SO: Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-dependent, but not nerve growth factor-independent, differentiation and cell cycle arrest in the human neuroblastoma cell line, SY5Y. Oncogene. 2003 Nov 27;22(54):8774-85. [PubMed:14647472 ]
    16. Gimenez M, Soria-Pastor S, Junque C, Caldu X, Narberhaus A, Botet F, Bargallo N, Falcon C, Mercader JM: Proton magnetic resonance spectroscopy reveals medial temporal metabolic abnormalities in adolescents with history of preterm birth. Pediatr Res. 2008 Nov;64(5):572-7. doi: 10.1203/PDR.0b013e3181841eab. [PubMed:18596571 ]
    17. Gryz EA, Meakin SO: Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-independent cell survival and neuronal differentiation. Oncogene. 2000 Jan 20;19(3):417-30. [PubMed:10656690 ]

    PMID: 129787