Oxymorphone
An opioid analgesic with actions and uses similar to those of morphine, apart from an absence of cough suppressant activity. It is used in the treatment of moderate to severe pain, including pain in obstetrics. It may also be used as an adjunct to anesthesia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1092)
Structure for HMDB15323 (Oxymorphone)
C17H19NO4
301.3371
301.131408101
(1S,5R,13R,17S)-10,17-dihydroxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one
oxymorphone
76-41-5
UQCNKQCJZOAFTQ-ISWURRPUSA-N
This compound belongs to the class of organic compounds known as phenanthrenes and derivatives. These are polycyclic compounds containing a phenanthrene moiety, which is a tricyclic aromatic compound with three non-linearly fused benzene.
Organic compounds
Benzenoids
Phenanthrenes and derivatives
Not Available
Phenanthrenes and derivatives
Aromatic heteropolycyclic compounds
Expected but not Quantified
Solid
Predicted LC-MS/MS Spectrum – 10V, PositiveNot Available
Predicted LC-MS/MS Spectrum – 20V, PositiveNot Available
Predicted LC-MS/MS Spectrum – 40V, PositiveNot Available
Predicted LC-MS/MS Spectrum – 10V, NegativeNot Available
Predicted LC-MS/MS Spectrum – 20V, NegativeNot Available
Predicted LC-MS/MS Spectrum – 40V, NegativeNot Available
Mass Spectrum (Electron Ionization)splash10-0udl-7932000000-89141254d526ca629dacView in MoNA
Not Available
Not Available
None
None
DB01192
DBMET00321
Not Available
Not Available
Not Available
Not Available
4447650
C08019
Not Available
Not Available
Oxymorphone
HMDB15323
HMDB15323
Not Available
5284604
Not Available
194484
Enzymes
- General function:
- Involved in monooxygenase activity
- Specific function:
- Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
- Gene Name:
- CYP3A4
- Uniprot ID:
- P08684
- Molecular weight:
- 57255.585
References
- Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K: Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol. 2010 Jul;70(1):78-87. doi: 10.1111/j.1365-2125.2010.03653.x. [PubMed:20642550 ]
- Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC, Rossier MF, Hochstrasser D, Dayer P, Desmeules JA: The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. Br J Pharmacol. 2010 Jun;160(4):907-18. doi: 10.1111/j.1476-5381.2010.00673.x. [PubMed:20590587 ]
- Lalovic B, Kharasch E, Hoffer C, Risler L, Liu-Chen LY, Shen DD: Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther. 2006 May;79(5):461-79. [PubMed:16678548 ]
- Adams M, Pieniaszek HJ Jr, Gammaitoni AR, Ahdieh H: Oxymorphone extended release does not affect CYP2C9 or CYP3A4 metabolic pathways. J Clin Pharmacol. 2005 Mar;45(3):337-45. [PubMed:15703368 ]
- General function:
- Involved in monooxygenase activity
- Specific function:
- Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
- Gene Name:
- CYP2D6
- Uniprot ID:
- P10635
- Molecular weight:
- 55768.94
References
- Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K: Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol. 2010 Jul;70(1):78-87. doi: 10.1111/j.1365-2125.2010.03653.x. [PubMed:20642550 ]
- Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC, Rossier MF, Hochstrasser D, Dayer P, Desmeules JA: The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. Br J Pharmacol. 2010 Jun;160(4):907-18. doi: 10.1111/j.1476-5381.2010.00673.x. [PubMed:20590587 ]
- Lalovic B, Kharasch E, Hoffer C, Risler L, Liu-Chen LY, Shen DD: Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther. 2006 May;79(5):461-79. [PubMed:16678548 ]
- General function:
- Involved in G-protein coupled receptor protein signaling pathway
- Specific function:
- Inhibits neurotransmitter release by reducing calcium ion currents and increasing potassium ion conductance. Highly stereoselective. receptor for enkephalins
- Gene Name:
- OPRD1
- Uniprot ID:
- P41143
- Molecular weight:
- 40412.3
References
- Chamberlin KW, Cottle M, Neville R, Tan J: Oral oxymorphone for pain management. Ann Pharmacother. 2007 Jul;41(7):1144-52. Epub 2007 Jun 26. [PubMed:17595308 ]
- Ananthan S, Khare NK, Saini SK, Seitz LE, Bartlett JL, Davis P, Dersch CM, Porreca F, Rothman RB, Bilsky EJ: Identification of opioid ligands possessing mixed micro agonist/delta antagonist activity among pyridomorphinans derived from naloxone, oxymorphone, and hydromorphone [correction of hydropmorphone]. J Med Chem. 2004 Mar 11;47(6):1400-12. [PubMed:14998329 ]
- General function:
- Involved in G-protein coupled receptor protein signaling pathway
- Specific function:
- Inhibits neurotransmitter release by reducing calcium ion currents and increasing potassium ion conductance. Receptor for beta-endorphin
- Gene Name:
- OPRM1
- Uniprot ID:
- P35372
- Molecular weight:
- 44778.9
References
- Spetea M, Nevin ST, Hosztafi S, Ronai AZ, Toth G, Borsodi A: Affinity profiles of novel delta-receptor selective benzofuran derivatives of non-peptide opioids. Neurochem Res. 1998 Sep;23(9):1211-6. [PubMed:9712193 ]
- Lemberg KK, Kontinen VK, Siiskonen AO, Viljakka KM, Yli-Kauhaluoma JT, Korpi ER, Kalso EA: Antinociception by spinal and systemic oxycodone: why does the route make a difference? In vitro and in vivo studies in rats. Anesthesiology. 2006 Oct;105(4):801-12. [PubMed:17006080 ]
- Chamberlin KW, Cottle M, Neville R, Tan J: Oral oxymorphone for pain management. Ann Pharmacother. 2007 Jul;41(7):1144-52. Epub 2007 Jun 26. [PubMed:17595308 ]
- Halimi G, Devaux C, Clot-Faybesse O, Sampol J, Legof L, Rochat H, Guieu R: Modulation of adenosine concentration by opioid receptor agonists in rat striatum. Eur J Pharmacol. 2000 Jun 16;398(2):217-24. [PubMed:10854833 ]
- Gardell LR, King T, Ossipov MH, Rice KC, Lai J, Vanderah TW, Porreca F: Opioid receptor-mediated hyperalgesia and antinociceptive tolerance induced by sustained opiate delivery. Neurosci Lett. 2006 Mar 20;396(1):44-9. Epub 2005 Dec 15. [PubMed:16343768 ]
- Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [PubMed:11752352 ]