Tryptophyl-Glycine

Common Name

Tryptophyl-Glycine Description

Tryptophyl-Glycine is a dipeptide composed of tryptophan and glycine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite. Structure

MOLSDF3D-SDFPDBSMILESInChI View 3D Structure

Structure for HMDB29083 (Tryptophyl-Glycine)

Synonyms

Value Source L-Tryptophyl-L-glycineHMDB TRP-GlyHMDB Tryptophan glycine dipeptideHMDB Tryptophan-glycine dipeptideHMDB TryptophylglycineHMDB W-g DipeptideHMDB WG DipeptideHMDB TryptophanylglycineMeSH

Chemical Formlia

C13H15N3O3 Average Molecliar Weight

261.2765 Monoisotopic Molecliar Weight

261.111341361 IUPAC Name

2-[2-amino-3-(1H-indol-3-yl)propanamido]acetic acid Traditional Name

[2-amino-3-(1H-indol-3-yl)propanamido]acetic acid CAS Registry Number

Not Available SMILES

NC(CC1=CNC2=C1C=CC=C2)C(=O)NCC(O)=O

InChI Identifier

InChI=1S/C13H15N3O3/c14-10(13(19)16-7-12(17)18)5-8-6-15-11-4-2-1-3-9(8)11/h1-4,6,10,15H,5,7,14H2,(H,16,19)(H,17,18)

InChI Key

UYKREHOKELZSPB-UHFFFAOYSA-N Chemical Taxonomy Description

This compound belongs to the class of chemical entities known as dipeptides. These are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Kingdom

Chemical entities Super Class

Organic compounds Class

Organic acids and derivatives Sub Class

Carboxylic acids and derivatives Direct Parent

Dipeptides Alternative Parents

  • N-acyl-alpha amino acids
  • Tryptamines and derivatives
  • Alpha amino acid amides
  • 3-alkylindoles
  • Aralkylamines
  • Substituted pyrroles
  • Benzenoids
  • Fatty amides
  • Heteroaromatic compounds
  • Secondary carboxylic acid amides
  • Amino acids
  • Carboxylic acids
  • Monocarboxylic acids and derivatives
  • Azacyclic compounds
  • Monoalkylamines
  • Carbonyl compounds
  • Organic oxides
  • Organopnictogen compounds
  • Hydrocarbon derivatives
  • Substituents

  • Alpha-dipeptide
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Alpha-amino acid amide
  • Triptan
  • Alpha-amino acid or derivatives
  • 3-alkylindole
  • Indole
  • Indole or derivatives
  • Aralkylamine
  • Fatty amide
  • Substituted pyrrole
  • Fatty acyl
  • Benzenoid
  • Heteroaromatic compound
  • Pyrrole
  • Secondary carboxylic acid amide
  • Amino acid or derivatives
  • Carboxamide group
  • Amino acid
  • Organoheterocyclic compound
  • Azacycle
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Organic oxygen compound
  • Primary aliphatic amine
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Organic nitrogen compound
  • Organonitrogen compound
  • Carbonyl group
  • Organooxygen compound
  • Amine
  • Primary amine
  • Aromatic heteropolycyclic compound
  • Molecliar Framework

    Aromatic heteropolycyclic compounds External Descriptors

    Not Available Ontology Status

    Expected but not Quantified Origin

  • Endogenous
  • Biofunction

    Not Available Application

    Not Available Cellliar locations

    Not Available Physical Properties State

    Solid Experimental Properties

    Property Value Reference Melting PointNot AvailableNot Available Boiling PointNot AvailableNot Available Water SolubilityNot AvailableNot Available LogP-2.19Extrapolated

    Predicted Properties

    Property Value Source Water Solubility0.85 mg/mLALOGPS logP-0.94ALOGPS logP-2.2ChemAxon logS-2.5ALOGPS pKa (Strongest Acidic)3.72ChemAxon pKa (Strongest Basic)7.96ChemAxon Physiological Charge0ChemAxon Hydrogen Acceptor Count4ChemAxon Hydrogen Donor Count4ChemAxon Polar Surface Area108.21 Å2ChemAxon Rotatable Bond Count5ChemAxon Refractivity69.01 m3·mol-1ChemAxon Polarizability26.81 Å3ChemAxon Number of Rings2ChemAxon Bioavailability1ChemAxon Rlie of FiveYesChemAxon Ghose FilterYesChemAxon Vebers RlieYesChemAxon MDDR-like RlieYesChemAxon

    Spectra Spectra

    Spectrum Type Description Splash Key Predicted LC-MS/MS

    Predicted LC-MS/MS Spectrum – 10V, PositiveNot Available Predicted LC-MS/MS

    Predicted LC-MS/MS Spectrum – 20V, PositiveNot Available Predicted LC-MS/MS

    Predicted LC-MS/MS Spectrum – 40V, PositiveNot Available Predicted LC-MS/MS

    Predicted LC-MS/MS Spectrum – 10V, NegativeNot Available Predicted LC-MS/MS

    Predicted LC-MS/MS Spectrum – 20V, NegativeNot Available Predicted LC-MS/MS

    Predicted LC-MS/MS Spectrum – 40V, NegativeNot Available

    Biological Properties Cellliar Locations

    Not Available Biofluid Locations

    Not Available Tissue Location

    Not Available Pathways

    Not Available Normal Concentrations Not Available Abnormal Concentrations

    Not Available Associated Disorders and Diseases Disease References

    None Associated OMIM IDs

    None External Links DrugBank ID

    Not Available DrugBank Metabolite ID

    Not Available Phenol Explorer Compound ID

    Not Available Phenol Explorer Metabolite ID

    Not Available FoodDB ID

    Not Available KNApSAcK ID

    Not Available Chemspider ID

    Not Available KEGG Compound ID

    Not Available BioCyc ID

    Not Available BiGG ID

    Not Available Wikipedia Link

    Not Available NuGOwiki Link

    HMDB29083 Metagene Link

    HMDB29083 METLIN ID

    Not Available PubChem Compound

    Not Available PDB ID

    Not Available ChEBI ID

    Not Available

    Product: AS1517499

    References Synthesis Reference Not Available Material Safety Data Sheet (MSDS) Not Available General References
    1. Eisenberg AS, Juszczak LJ: Correlation of TrpGly and GlyTrp Rotamer Structure with W7 and W10 UV Resonance Raman Modes and Fluorescence Emission Shifts. J Amino Acids. 2012;2012:735076. doi: 10.1155/2012/735076. Epub 2012 Jul 22. [PubMed:22888404 ]
    2. Pan Y, Birkedal H, Pattison P, Brown D, Chapuis G: Molecular dynamics study of tryptophylglycine: a dipeptide nanotube with confined water. J Phys Chem B. 2004 May 20;108(20):6458-66. doi: 10.1021/jp037219v. [PubMed:18950135 ]
    3. Yajima H, Kubo K: Studies on peptides. IV. The synthesis of D-histidyl-L-phenylalanyl-L- arginyl-L-tryptophylglycine and L-histidyl-L-phenylalanyl-L-arginyl-D-tryptophylglycine and their physiological properties in frog melanocyte in vitro. Chem Pharm Bull (Tokyo). 1965 Jul;13(7):759-64. [PubMed:5879901 ]
    4. YAJIMA H, KUBO K: THE SYNTHESIS OF D-HISTIDYL-L-PHENYLALANYL-L-ARGINYL-L-TRYPTOPHYLGLYCINE AND L-HISTIDYL-L-PHENYLALANYL-L-ARGINYL-D-TRYPTOPHYLGLYCINE AND THEIR PHYSIOLOGICAL PROPERTIES IN FROG MELANOCYTE. Biochim Biophys Acta. 1965 Mar 8;97:596-7. [PubMed:14323609 ]
    5. Partanen S, Kaakkola S, Kaariainen I: Tryptophylglycine dipeptide in ACTH/MSH cells of the human hypophysis: its identification and studies on its antinociceptive effects in mice. Acta Physiol Scand. 1979 Nov;107(3):213-18. [PubMed:231893 ]
    6. YAJIMA H, KUBO K: STUDIES ON PEPTIDES. II. SYNTHESIS AND PHYSIOLOGICAL PROPERTIES OF D-HISTIDYL-D-PHENYLALANYL-D-ARGINYL-D-TRYPTOPHYLGLYCINE, AN OPTICAL ANTIPODE OF AN ACTIVE FRAGMENT OF ALPHA-MELANOCYTE-STIMULATING HORMONE. J Am Chem Soc. 1965 May 5;87:2039-44. [PubMed:14290281 ]
    7. Goldmann W, Chong A, Foster J, Hope J, Hunter N: The shortest known prion protein gene allele occurs in goats, has only three octapeptide repeats and is non-pathogenic. J Gen Virol. 1998 Dec;79 ( Pt 12):3173-6. [PubMed:9880037 ]
    8. Hano K, Koida M, Yajima H, Kubo K, Oshima T: Sodium hydroxide treatment of L-histidyl-L-phenylalanyl-L-arginyl-L-tryptophylglycine and its potentiated melanocyte-stimulating activity in vitro. Biochim Biophys Acta. 1966 Feb 28;115(2):337-44. [PubMed:5943437 ]
    9. Russo FS, Persson AV, Wilson IB: A fluorogenic substrate for angiotensin-converting enzyme in plasma. Clin Chem. 1978 Sep;24(9):1539-42. [PubMed:210982 ]
    10. Tan HK, Wheeler WB, Wei CI: Reaction of chlorine dioxide with amino acids and peptides: kinetics and mutagenicity studies. Mutat Res. 1987 Aug;188(4):259-66. [PubMed:3302695 ]
    11. Vellucci SV, Webster RA: Modification of diazepams antileptazol activity by endogenous tryptophan-like compounds. Eur J Pharmacol. 1981 Dec 3;76(2-3):255-9. [PubMed:6277645 ]

    PMID: 9015795