Lysyl-Arginine

Common Name

Lysyl-Arginine Description

Lysyl-Arginine is a dipeptide composed of lysine and arginine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite. Structure

MOLSDF3D-SDFPDBSMILESInChI View 3D Structure

Structure for HMDB28945 (Lysyl-Arginine)

Synonyms

Value Source K-R DipeptideHMDB KR DipeptideHMDB L-Lysyl-L-arginineHMDB Lys-argHMDB Lysine arginine dipeptideHMDB Lysine-arginine dipeptideHMDB LysylarginineHMDB

Chemical Formlia

C12H26N6O3 Average Molecliar Weight

302.3732 Monoisotopic Molecliar Weight

302.206638728 IUPAC Name

5-carbamimidamido-2-(2,6-diaminohexanamido)pentanoic acid Traditional Name

5-carbamimidamido-2-(2,6-diaminohexanamido)pentanoic acid CAS Registry Number

Not Available SMILES

NCCCCC(N)C(=O)NC(CCCNC(N)=N)C(O)=O

InChI Identifier

InChI=1S/C12H26N6O3/c13-6-2-1-4-8(14)10(19)18-9(11(20)21)5-3-7-17-12(15)16/h8-9H,1-7,13-14H2,(H,18,19)(H,20,21)(H4,15,16,17)

InChI Key

NPBGTPKLVJEOBE-UHFFFAOYSA-N Chemical Taxonomy Description

This compound belongs to the class of chemical entities known as dipeptides. These are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Kingdom

Chemical entities Super Class

Organic compounds Class

Organic acids and derivatives Sub Class

Carboxylic acids and derivatives Direct Parent

Dipeptides Alternative Parents

  • N-acyl-alpha amino acids
  • Alpha amino acid amides
  • N-acyl amines
  • Fatty acids and conjugates
  • Secondary carboxylic acid amides
  • Amino acids
  • Guanidines
  • Propargyl-type 1,3-dipolar organic compounds
  • Monocarboxylic acids and derivatives
  • Carboximidamides
  • Carboxylic acids
  • Hydrocarbon derivatives
  • Monoalkylamines
  • Carbonyl compounds
  • Organic oxides
  • Organopnictogen compounds
  • Substituents

  • Alpha-dipeptide
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Alpha-amino acid amide
  • Alpha-amino acid or derivatives
  • Fatty amide
  • Fatty acyl
  • Fatty acid
  • N-acyl-amine
  • Amino acid or derivatives
  • Carboxamide group
  • Amino acid
  • Guanidine
  • Secondary carboxylic acid amide
  • Carboxylic acid
  • Organic 1,3-dipolar compound
  • Monocarboxylic acid or derivatives
  • Propargyl-type 1,3-dipolar organic compound
  • Carboximidamide
  • Organic oxygen compound
  • Primary aliphatic amine
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Carbonyl group
  • Amine
  • Organopnictogen compound
  • Primary amine
  • Organonitrogen compound
  • Organooxygen compound
  • Aliphatic acyclic compound
  • Molecliar Framework

    Aliphatic acyclic compounds External Descriptors

    Not Available Ontology Status

    Expected but not Quantified Origin

  • Endogenous
  • Biofunction

    Not Available Application

    Not Available Cellliar locations

    Not Available Physical Properties State

    Solid Experimental Properties

    Property Value Reference Melting PointNot AvailableNot Available Boiling PointNot AvailableNot Available Water SolubilityNot AvailableNot Available LogP-3.9Extrapolated

    Predicted Properties

    Property Value Source Water Solubility0.36 mg/mLALOGPS logP-3.7ALOGPS logP-3.9ChemAxon logS-2.9ALOGPS pKa (Strongest Acidic)3.7ChemAxon pKa (Strongest Basic)12.1ChemAxon Physiological Charge2ChemAxon Hydrogen Acceptor Count8ChemAxon Hydrogen Donor Count7ChemAxon Polar Surface Area180.34 Å2ChemAxon Rotatable Bond Count11ChemAxon Refractivity88.53 m3·mol-1ChemAxon Polarizability33.01 Å3ChemAxon Number of Rings0ChemAxon Bioavailability0ChemAxon Rlie of FiveYesChemAxon Ghose FilterYesChemAxon Vebers RlieYesChemAxon MDDR-like RlieYesChemAxon

    Spectra Spectra

    Not Available Biological Properties Cellliar Locations

    Not Available Biofluid Locations

    Not Available Tissue Location

    Not Available Pathways

    Not Available Normal Concentrations Not Available Abnormal Concentrations

    Not Available Associated Disorders and Diseases Disease References

    None Associated OMIM IDs

    None External Links DrugBank ID

    Not Available DrugBank Metabolite ID

    Not Available Phenol Explorer Compound ID

    Not Available Phenol Explorer Metabolite ID

    Not Available FoodDB ID

    Not Available KNApSAcK ID

    Not Available Chemspider ID

    Not Available KEGG Compound ID

    Not Available BioCyc ID

    Not Available BiGG ID

    Not Available Wikipedia Link

    Not Available NuGOwiki Link

    HMDB28945 Metagene Link

    HMDB28945 METLIN ID

    Not Available PubChem Compound

    Not Available PDB ID

    Not Available ChEBI ID

    Not Available

    Product: SPACE peptide

    References Synthesis Reference Not Available Material Safety Data Sheet (MSDS) Not Available General References
    1. Thorne BA, Viveros OH, Thomas G: Expression and processing of mouse proopiomelanocortin in bovine adrenal chromaffin cells. A model system to study tissue-specific prohormone processing. J Biol Chem. 1991 Jul 25;266(21):13607-15. [PubMed:1856197 ]
    2. Mitchell WM: Hydrolysis at arginylproline in polypeptides by clostridiopeptidase B. Science. 1968 Oct 18;162(3851):374-5. [PubMed:5677534 ]
    3. Toyoda T, Sakaguchi T, Imai K, Inocencio NM, Gotoh B, Hamaguchi M, Nagai Y: Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of Newcastle disease virus. Virology. 1987 May;158(1):242-7. [PubMed:3576973 ]
    4. Zhu YS, Zhang XY, Cartwright CP, Tipper DJ: Kex2-dependent processing of yeast K1 killer preprotoxin includes cleavage at ProArg-44. Mol Microbiol. 1992 Feb;6(4):511-20. [PubMed:1560780 ]
    5. Rehemtulla A, Kaufman RJ: Preferred sequence requirements for cleavage of pro-von Willebrand factor by propeptide-processing enzymes. Blood. 1992 May 1;79(9):2349-55. [PubMed:1571548 ]
    6. Ledgerwood EC, Brennan SO, Cawley NX, Loh YP, George PM: Yeast aspartic protease 3 (Yap3) prefers substrates with basic residues in the P2, P1 and P2 positions. FEBS Lett. 1996 Mar 25;383(1-2):67-71. [PubMed:8612794 ]
    7. Glandieres JM, Hertzog M, Lazar N, Brakch N, Cohen P, Alpert B, Rholam M: Kinetics of precursor cleavage at the dibasic sites. Involvement of peptide dynamics. FEBS Lett. 2002 Apr 10;516(1-3):75-9. [PubMed:11959107 ]
    8. Wijeyeweera RL, Kleinberg I: Arginolytic and ureolytic activities of pure cultures of human oral bacteria and their effects on the pH response of salivary sediment and dental plaque in vitro. Arch Oral Biol. 1989;34(1):43-53. [PubMed:2675800 ]
    9. Sasaki S, Matsuyama S, Mizushima S: In vitro kinetic analysis of the role of the positive charge at the amino-terminal region of signal peptides in translocation of secretory protein across the cytoplasmic membrane in Escherichia coli. J Biol Chem. 1990 Mar 15;265(8):4358-63. [PubMed:2106519 ]
    10. Seidah NG, Chretien M: Proprotein and prohormone convertases of the subtilisin family Recent developments and future perspectives. Trends Endocrinol Metab. 1992 May-Jun;3(4):133-40. [PubMed:18407092 ]
    11. Rolleman EJ, Valkema R, de Jong M, Kooij PP, Krenning EP: Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging. 2003 Jan;30(1):9-15. Epub 2002 Oct 29. [PubMed:12483404 ]
    12. Potter RL, Taylor SS: The structural domains of cAMP-dependent protein kinase I. Characterization of two sites of proteolytic cleavage and homologies to cAMP-dependent protein kinase II. J Biol Chem. 1980 Oct 25;255(20):9706-12. [PubMed:7430094 ]
    13. Bresnahan PA, Leduc R, Thomas L, Thorner J, Gibson HL, Brake AJ, Barr PJ, Thomas G: Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J Cell Biol. 1990 Dec;111(6 Pt 2):2851-9. [PubMed:2269657 ]
    14. Rholam M, Brakch N, Germain D, Thomas DY, Fahy C, Boussetta H, Boileau G, Cohen P: Role of amino acid sequences flanking dibasic cleavage sites in precursor proteolytic processing. The importance of the first residue C-terminal of the cleavage site. Eur J Biochem. 1995 Feb 1;227(3):707-14. [PubMed:7867629 ]
    15. Bocian W, Borowicz P, Mikolajczyk J, Sitkowski J, Tarnowska A, Bednarek E, Glabski T, Tejchman-Malecka B, Bogiel M, Kozerski L: NMR structure of biosynthetic engineered human insulin monomer B31(Lys)-B32(Arg) in water/acetonitrile solution. Comparison with the solution structure of native human insulin monomer. Biopolymers. 2008 Oct;89(10):820-30. doi: 10.1002/bip.21018. [PubMed:18491415 ]
    16. Denepitiya L, Kleinberg I: A comparison of the acid-base and aciduric properties of various serotypes of the bacterium Streptococcus mutans associated with dental plaque. Arch Oral Biol. 1984;29(5):385-93. [PubMed:6588936 ]
    17. Kozlov DG, Prahl N, Efremov BD, Peters L, Wambut R, Karpychev IV, Eldarov MA, Benevolensky SV: Host cell properties and external pH affect proinsulin production by Saccharomyces yeast. Yeast. 1995 Jun 30;11(8):713-24. [PubMed:7668041 ]
    18. Rholam M, Cohen P, Brakch N, Paolillo L, Scatturin A, Di Bello C: Evidence for beta-turn structure in model peptides reproducing pro-ocytocin/neurophysin proteolytic processing site. Biochem Biophys Res Commun. 1990 May 16;168(3):1066-73. [PubMed:2132568 ]

    PMID: 21653728