Glutamyl-Cysteine

Common Name

Glutamyl-Cysteine Description

Glutamyl-Cysteine is a dipeptide composed of glutamate and cysteine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite. Structure

MOLSDFPDBSMILESInChI

Structure for HMDB28816 (Glutamyl-Cysteine)

Synonyms

Value Source e-C DipeptideHMDB EC dipeptideHMDB Glu-cysHMDB Glutamate cysteine dipeptideHMDB Glutamate-cysteine dipeptideHMDB GlutamylcysteineHMDB L-Glutamyl-L-cysteineHMDB

Chemical Formlia

C8H13N2O5S Average Molecliar Weight

249.264 Monoisotopic Molecliar Weight

249.054517226 IUPAC Name

4-amino-4-[(1-carboxy-2-slifanylethyl)carbamoyl]butanoate Traditional Name

4-amino-4-[(1-carboxy-2-slifanylethyl)carbamoyl]butanoate CAS Registry Number

Not Available SMILES

NC(CCC([O-])=O)C(=O)NC(CS)C(O)=O

InChI Identifier

InChI=1S/C8H14N2O5S/c9-4(1-2-6(11)12)7(13)10-5(3-16)8(14)15/h4-5,16H,1-3,9H2,(H,10,13)(H,11,12)(H,14,15)/p-1

InChI Key

PABVKUJVLNMOJP-UHFFFAOYSA-M Chemical Taxonomy Description

This compound belongs to the class of chemical entities known as dipeptides. These are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Kingdom

Chemical entities Super Class

Organic compounds Class

Organic acids and derivatives Sub Class

Carboxylic acids and derivatives Direct Parent

Dipeptides Alternative Parents

  • Glutamic acid and derivatives
  • N-acyl-alpha amino acids
  • Cysteine and derivatives
  • Alpha amino acid amides
  • Amino fatty acids
  • N-acyl amines
  • Dicarboxylic acids and derivatives
  • Secondary carboxylic acid amides
  • Amino acids
  • Alkylthiols
  • Carboxylic acids
  • Organic oxides
  • Monoalkylamines
  • Hydrocarbon derivatives
  • Carbonyl compounds
  • Organopnictogen compounds
  • Organic anions
  • Substituents

  • Alpha-dipeptide
  • Glutamic acid or derivatives
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Alpha-amino acid amide
  • Cysteine or derivatives
  • Alpha-amino acid or derivatives
  • Amino fatty acid
  • N-acyl-amine
  • Fatty amide
  • Dicarboxylic acid or derivatives
  • Fatty acid
  • Fatty acyl
  • Secondary carboxylic acid amide
  • Carboxamide group
  • Amino acid or derivatives
  • Amino acid
  • Carboxylic acid
  • Alkylthiol
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organonitrogen compound
  • Primary aliphatic amine
  • Organooxygen compound
  • Organoslifur compound
  • Primary amine
  • Carbonyl group
  • Hydrocarbon derivative
  • Organic oxide
  • Amine
  • Organopnictogen compound
  • Organic anion
  • Aliphatic acyclic compound
  • Molecliar Framework

    Aliphatic acyclic compounds External Descriptors

    Not Available Ontology Status

    Detected and Quantified Origin

  • Endogenous
  • Biofunction

    Not Available Application

    Not Available Cellliar locations

    Not Available Physical Properties State

    Solid Experimental Properties

    Property Value Reference Melting PointNot AvailableNot Available Boiling PointNot AvailableNot Available Water SolubilityNot AvailableNot Available LogP-3.97Extrapolated

    Predicted Properties

    Property Value Source Water Solubility6.29 mg/mLALOGPS logP-2.7ALOGPS logP-4ChemAxon logS-1.6ALOGPS pKa (Strongest Acidic)3.24ChemAxon pKa (Strongest Basic)8.44ChemAxon Physiological Charge-1ChemAxon Hydrogen Acceptor Count6ChemAxon Hydrogen Donor Count4ChemAxon Polar Surface Area132.55 Å2ChemAxon Rotatable Bond Count7ChemAxon Refractivity67.15 m3·mol-1ChemAxon Polarizability23.53 Å3ChemAxon Number of Rings0ChemAxon Bioavailability1ChemAxon Rlie of FiveYesChemAxon Ghose FilterYesChemAxon Vebers RlieYesChemAxon MDDR-like RlieYesChemAxon

    Spectra Spectra

    Not Available Biological Properties Cellliar Locations

    Not Available Biofluid Locations

  • Saliva
  • Tissue Location

    Not Available Pathways

    Not Available Normal Concentrations

    Biofluid Status Value Age Sex Condition Reference Details SalivaDetected and Quantified24.03 +/- 2.60 uMAdlit (>18 years old)BothNormal

  • Zerihun T. Dame, …
  • details

    Abnormal Concentrations

    Not Available Associated Disorders and Diseases Disease References

    None Associated OMIM IDs

    None External Links DrugBank ID

    Not Available DrugBank Metabolite ID

    Not Available Phenol Explorer Compound ID

    Not Available Phenol Explorer Metabolite ID

    Not Available FoodDB ID

    Not Available KNApSAcK ID

    Not Available Chemspider ID

    Not Available KEGG Compound ID

    Not Available BioCyc ID

    Not Available BiGG ID

    Not Available Wikipedia Link

    Not Available NuGOwiki Link

    HMDB28816 Metagene Link

    HMDB28816 METLIN ID

    Not Available PubChem Compound

    Not Available PDB ID

    Not Available ChEBI ID

    Not Available

    Product: GAL-021

    References Synthesis Reference Not Available Material Safety Data Sheet (MSDS) Not Available General References
    1. Zinellu A, Sotgia S, Usai MF, Chessa R, Deiana L, Carru C: Thiol redox status evaluation in red blood cells by capillary electrophoresis-laser induced fluorescence detection. Electrophoresis. 2005 May;26(10):1963-8. [PubMed:15812837 ]
    2. Wunschmann J, Krajewski M, Letzel T, Huber EM, Ehrmann A, Grill E, Lendzian KJ: Dissection of glutathione conjugate turnover in yeast. Phytochemistry. 2010 Jan;71(1):54-61. doi: 10.1016/j.phytochem.2009.09.034. Epub 2009 Nov 10. [PubMed:19897216 ]
    3. Murata M, Bansho Y, Inoue S, Ito K, Ohnishi S, Midorikawa K, Kawanishi S: Requirement of glutathione and cysteine in guanine-specific oxidation of DNA by carcinogenic potassium bromate. Chem Res Toxicol. 2001 Jun;14(6):678-85. [PubMed:11409938 ]
    4. Vande Weghe JG, Ow DW: Accumulation of metal-binding peptides in fission yeast requires hmt2+. Mol Microbiol. 2001 Oct;42(1):29-36. [PubMed:11679064 ]
    5. Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N: Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol. 1999 Dec;121(4):1169-78. [PubMed:10594104 ]
    6. Meuwly P, Thibault P, Schwan AL, Rauser WE: Three families of thiol peptides are induced by cadmium in maize. Plant J. 1995 Mar;7(3):391-400. [PubMed:7757112 ]
    7. Yen TY, Villa JA, DeWitt JG: Analysis of phytochelatin-cadmium complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom. 1999 Sep;34(9):930-41. [PubMed:10491589 ]
    8. Noble DR, Williams DL: Structure-reactivity studies of the Cu(2+)-catalyzed decomposition of four S-nitrosothiols based around the S-Nitrosocysteine/S-nitrosoglutathione structures. Nitric Oxide. 2000 Aug;4(4):392-8. [PubMed:10944424 ]
    9. Brautigam A, Schaumloffel D, Krauss GJ, Wesenberg D: Analytical approach for characterization of cadmium-induced thiol peptides–a case study using Chlamydomonas reinhardtii. Anal Bioanal Chem. 2009 Nov;395(6):1737-47. doi: 10.1007/s00216-009-2921-7. Epub 2009 Jul 10. [PubMed:19590857 ]
    10. Wang W, Clarkson TW, Ballatori N: gamma-Glutamyl transpeptidase and l-cysteine regulate methylmercury uptake by HepG2 cells, a human hepatoma cell line. Toxicol Appl Pharmacol. 2000 Oct 1;168(1):72-8. [PubMed:11000102 ]
    11. Kataoka H, Takagi K, Makita M: Determination of glutathione and related aminothiols by gas chromatography with flame photometric detection. Biomed Chromatogr. 1995 Mar-Apr;9(2):85-9. [PubMed:7795391 ]
    12. Sherrill C, Fahey RC: Import and metabolism of glutathione by Streptococcus mutans. J Bacteriol. 1998 Mar;180(6):1454-9. [PubMed:9515913 ]
    13. Suto RK, Brasch NE, Anderson OP, Finke RG: Synthesis, characterization, solution stability, and X-ray crystal structure of the thiolatocobalamin gamma-glutamylcysteinylcobalamin, a dipeptide analogue of glutathionylcobalamin: insights into the enhanced Co-S bond stability of the natural product glutathionylcobalamin. Inorg Chem. 2001 Jun 4;40(12):2686-92. [PubMed:11375680 ]
    14. Chen WJ, Graminski GF, Armstrong RN: Dissection of the catalytic mechanism of isozyme 4-4 of glutathione S-transferase with alternative substrates. Biochemistry. 1988 Jan 26;27(2):647-54. [PubMed:3349053 ]
    15. Blum R, Meyer KC, Wunschmann J, Lendzian KJ, Grill E: Cytosolic action of phytochelatin synthase. Plant Physiol. 2010 May;153(1):159-69. doi: 10.1104/pp.109.149922. Epub 2010 Mar 19. [PubMed:20304971 ]
    16. Jez JM, Cahoon RE, Chen S: Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J Biol Chem. 2004 Aug 6;279(32):33463-70. Epub 2004 Jun 4. [PubMed:15180996 ]

    PMID: 18289523